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ABSTRACT 

 

The paper explores the effects of mechanical vibrations of multi-storey buildings. The 

vibrations are induced by earthquake. The aim of the paper is to apply the theoretical 

knowledge of differential equations to study the effect of earthquake on multi-storeyed 

buildings. The main aim of this paper is to study and deduce the stability of buildings with 

different dimensions and shapes during an earthquake. The study involves a system of 

differential equations that are solved by applying the method of eigenvalues and eigenvectors. 

The effect of Coulomb damping is also incorporated in the equations.  
 

Keywords: System of differential equations; Mathematical modeling; Earthquake; Multi-

storeyed building; Coulomb damping 

 

INTRODUCTION 

 

As seismic waves move through the ground, the ground also moves at its natural frequency. 

During an earthquake if the frequency with which the building sways, matches with building’s 

natural frequency, i.e. when the frequency contents of the ground motion are centered around 

the building's natural frequency, we say that the building and the ground motion are in 

resonance with one another. Resonance tends to increase or amplify the building's response. 

Because of this, buildings suffer the greatest damage from ground motion at a frequency close 

or equal to their own natural frequency.Although the phenomenon of resonance can be 

extremely damaging, its effects can be reduced. In designing seismically safe buildings, an 

architect or engineer must be concerned with “tuning” a building so that the tendency for its 

own vibration to be amplified by resonance is reduced or eliminated. There come hundreds of 

small earthquakes around the world every day. Some of them are so minor that we, humans 

cannot even feel them, but seismographs and other sensitive machines can record them. 

However, some of them result in great devastation, taking the life of thousands of people, and 

destroying the properties of billions. Today, it has become imperative that structures should be 

designed to resist earthquake forces, in order to reduce the loss of life. The science of 

Earthquake Engineering and Structural Design has improved tremendously. Architects around 

the world are trying their best to design safe structures that can withstand earthquakes of 

reasonable magnitude.  

A common misconception is that a taller building will face more damage than a shorter building. 

The Mexico City earthquake of September 19, 1985 provides a striking illustration to contradict 

this. A majority of the buildings that collapsed during this earthquake were around twenty 

storey tall. These twenty storey buildings were in resonance with the frequency contents of the 

1985 earthquake. Other buildings, of different heights (some greater than twenty storeys) and 
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with different vibration characteristics, were often found undamaged even though they were 

located right next to the damaged twenty storey buildings. 

The mathematical conceptualization of the vibrations of an earthquakehelp to understand 

various questions that may arise. Which building will collapse first compared to the other 

building? What period of an earthquakewill produce the destructive resonance vibration onthe 

building? Why an earthquake will demolish one building but leave the one nextdoor 

untouched? Although it is difficult to incorporate all the causes that bring about the damages 

in the building due to earthquake, qualitative answers to these questions can be got by modeling 

the problem by homogeneous system of second order differential equations that are also 

applied to model various mechanical applications. The system of spring coupled masses [1, 2] 

can be used to investigate the response to transverse earthquake ground oscillations of multi-

storeyed buildings. In this paper, the eigenvalues method for homogeneous systems is applied 

to investigate the movement of various floors of the multi-storeyed buildings by incorporating 

the effect of earthquake as periodic forced vibrations. The eigenvalues are used to find the 

natural frequency () of each floor and its respective time period. By examining the values 

of, it can be estimated that what magnitude and period of an earthquake will affect a particular 

floor or a building leaving the others untouched. Corresponding to the mathematical model for 

mass- spring system, which represents the simple harmonic motion; same theory is applied to 

formulate the mathematical model for the effect of earthquake induced vibrations on the 

buildings by making an assumption about the structure of the building and restricting the 

motion of the floors in the horizontal direction only. In this paper, some of the basic structures 

of building are considered and analyzed for the effect of earthquake. 

 

METHODOLOGY 

 

In order to model the structural dynamics of a building consisting of n floors, we make the 

following assumptions: 

(i) The floors have masses m1, m2, m3, …,mn. Each floor is assumed to be a point 

mass concentrated in the centre of each floor. 

(ii) A linear restoring force acts on each floor that is incorporated in the model by the 

stiffness factor k1, k2, k3, …,kn. 

(iii) There is a damping force which is directly proportional to the damping constants 

c1, c2, c3, …,cn between the floors. 

(iv) A horizontal earthquake oscillation, 𝐸𝑐𝑜𝑠𝜔𝑡 of the ground with amplitude 𝐸 and 

acceleration 𝑎 = −𝐸𝜔2𝑐𝑜𝑠𝜔𝑡, produces a force 𝐹 = 𝑚𝑎 = 𝑚 𝐸𝜔2𝑐𝑜𝑠𝜔𝑡 on each 

floor of the building. 

 

 

 
Figure I: Mathematical model of the building 

 

Applying Newton’s second law to the floors of the building yield the equation of motion as: 
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 𝑚1𝑥1" = −𝑘1𝑥1 + 𝑘2(𝑥2 − 𝑥1) − 𝑐1(𝑥1
′ − 𝑥2

′ ) + 𝑚1𝐸𝜔2𝑐𝑜𝑠𝜔𝑡 

𝑚2𝑥2" = −𝑘2(𝑥2 − 𝑥1) + 𝑘3(𝑥3 − 𝑥2) − 𝑐1(𝑥2
′ − 𝑥1

′ ) − 𝑐2(𝑥2
′ − 𝑥3

′ ) + 𝑚2𝐸𝜔2𝑐𝑜𝑠𝜔𝑡 

𝑚3𝑥3" = −𝑘3(𝑥3 − 𝑥2) + 𝑘4(𝑥4 − 𝑥3) − 𝑐2(𝑥3
′ − 𝑥2

′ ) − 𝑐3(𝑥3
′ − 𝑥4

′ ) + 𝑚3𝐸𝜔2𝑐𝑜𝑠𝜔𝑡 

 𝑚𝑛𝑥𝑛" = −𝑘𝑛(𝑥𝑛 − 𝑥𝑛−1) − 𝑐𝑛−1(𝑥𝑛
′ − 𝑥𝑛−1

′ ) + 𝑚𝑛𝐸𝜔2𝑐𝑜𝑠𝜔𝑡                            (1) 

where  x1, x2, … are displacement from the equilibrium state. 

 

In terms of displacement vector ,  

he mass matrix  ,  

the stiffness matrix   

and the damping matrix   

the system in equation (1) can be written in the matrix form as 

                                                                                                    (2) 
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In equation (2), the forced vibration vector  

The diagonal matrix Mis non- singular and to get its inverse, 𝑴−𝟏replaces each diagonal 

element with its reciprocal. Multiplying each side of equation (2) by 𝑴−𝟏 gives the second-

order system 

         (3) 

where 𝐴 = 𝑀−1𝐾,  𝑃 = 𝑀−1𝐶 and .  

We first find the solution of the homogeneous equation  

         (4) 

In order to find a solution of the equation (4), substitute a trial solution of the form 

          (5) 

 

 

where  is a constant vector. Substituting equation (5) in equation (4) gives 

        (6) 

whereI is the identity matrix of dimensions same as Pand A. 

For a non-trivial solution we require  

        (7) 

Alternatively, the system in equation (4) can also be solved by reducing the second order 

system to a system of two first order system of equations. 

For this, substitute 𝒙′ = 𝒚in equation (4) and system of two first order system of equation can 

be written as: 

      (8)  

whereX and D are 2 x 1 and 2 x 2 block matrices whose entries are nx 1and nxn matrices 

respectively. 

The system can be solved using the eigenvalues method for homogeneous systems by finding 

the eigenvalues for the block matrix Dgiven by det (D - 𝜆 I) = 0. 

det [
−𝜆 𝑰 𝑰

𝑨 𝑷 − 𝜆 𝑰
] = 0     (9) 

We state here a result proved in [3],  

If M=[
𝑆 𝑇
𝑈 𝑉

], where S, T, U, V are block matrices such that any of the blocks S and T or S and 

U or U and V or T and V commute then det (M)= det (SV - UT). 

From the matrix in (9) it is trivial to see that blocks S and U; S and T; T and V commute. 

Therefore the determinant of (9) is given by 

det (𝜆2𝑰 − 𝑷𝜆 − 𝑨) = 0        (7’) 

which is the same result as in equation (7).  

det a 2I -aP- A( ) = 0
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In the absence of the Coulomb damping (C = 0), the eigenvalues i
2of the system given by 

equation (7’) are negative.  

Let 1
2, 2

2, 3
2, …,n

2 be the eigenvalues of the matrix A = 𝑀−1𝐾. Then we have 
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It can be easily proved using mathematical induction that each i
2 is negative. Also  

M-1 is a diagonal matrix and K is a symmetric tridiagonal matrix. Therefore each i
2 is real and 

distinct.  

Unlike the case of absence of Coulomb damping [4], where there were only real negative values 

of the eigenvalues, in the presence of Coulomb damping the eigenvalues I may either be real 

or complex.The nature of the eigenvalues will decide the type of damping occurring in the 

system- over damped, critically damped or under damped. In the under damped case, when the 

eigenvalues comes out to be complex conjugate roots, the real part of the eigenvalues forms a 

part of amplitude of the oscillation exponentially decreasing with time and the imaginary part 

gives the circular frequency (pseudo frequency) of the oscillation.Therefore, with the 

Coulomb damping, floors may start and stop vibrating several times before the entire building 

comes to rest. 

The system (3) can then be written as:  

                (10) 

where B = 1 1 1 … 1
é
ëê

ù
ûú

T

 

In order to find a particular solution, we use the method of undetermined coefficients,  

𝑥𝑝(𝑡) = 𝒄 𝑐𝑜𝑠 𝜔𝑡 + 𝒅 𝑠𝑖𝑛 𝜔𝑡           (11) 

with the known external frequency 𝜔 of the earthquake. In equation (11) c and d are constant 

column vectors. 

Substituting (11) in (10) and equating the coefficients we get 

𝒅 = 𝜔(𝐴 + 𝐼𝜔2)−1𝑃 𝒄               (12) 𝒄 = [𝜔2𝑃(𝐴 + 𝐼𝜔2)−1𝑃 +  (𝐴 +
𝐼𝜔2) ]  −1𝐹0              (13) 

where𝐹𝟎 =  −𝐸𝜔2𝐵 

In the case of damping there are no phenomena of pure resonance where the natural frequency 

matches the frequency of the earthquake. However, what we talk about here is called the 

practical resonance where forced amplitude of vibration of the building remains finite for the 

value of 𝜔  (frequency of earthquake) but might attain a maximum. The frequency of 

earthquake does not exactly match the natural frequency of the building but is very close to it.  

 

 

RESULTS 

 

Although most of the high rise building are rectangular in shape, we can classify them in the 

following categories 

(i) Mass of each floor is constant (rectangular shape) 
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(ii) Mass of the floor decreases as we go up (pyramidal shape) Eg. pyramid-shaped 

tower to be built in the center of Jerusalem, Tour triangle proposed to be built in 

Paris 

 

 

(iii) Mass of the floor increases as we go up (inverted pyramidal shape) Eg. Hanoi 

Museum, Slovak radio building 

(iv) Mass of the floor first decreases and then increases as we go up (cross shape) Eg. 

Disaster education centre at Jerusalem 

(v) Mass of the floor first increases and then decreases as we go up (hexagonal shape) 

Eg. The national library, Minsk Brussel, Aldar headquarters, Abu Dhabi 

Geometrically these buildings may be represented as 

 

 
 (i)  (ii)    (iii)      (iv)              (v) 

 

Mathematically the entries in the mass matrix M will be 

(i) m1 = m2 = m3 = … = mn 

(ii) m1>m2>m3> … >mn 

(iii) m1<m2<m3< … <mn 

(iv) m1>m2>m3> … >mp ; mp<mp+1<mp+2< … <mn 

(v) m1<m2<m3< … <mp ; mp>mp+1>mp+2> … >mn 

For a rectangular building, the mass of each floor is taken as 1000 units. For the other cases 

the mass is increased or decreased by 200 units. The stiffness parameters ki’s are taken as 

constant for each floor with a value of 10000 units and the damping parameters ci’s are also 

taken as constant for each floor with a value of 500 units. The oscillation frequencies and time-

period for buildings of seven floors and four floors for different cases are calculated using 

equation (7) and tabulated in Table I – Table V 
Table-I Angular frequency () and time-period (T) for a rectangular building 

With damping Without damping 

Seven Floors Four Floors Seven Floors Four Floors 

 T  T  T  T 

6.11 1.03 5.87 1.07 0.66 9.50 1.10 5.72 

5.71 1.10 4.81 1.31 1.95 3.21 3.16 1.99 

5.07 1.24 3.15 1.99 3.16 1.99 4.84 1.30 

4.20 1.49 1.10 5.72 4.23 1.48 5.94 1.06 

3.15 1.99 - - 5.12 1.23 - - 

1.95 3.22 - - 5.78 1.09 - - 

0.66 9.51 - - 6.19 1.02 - - 
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Table-II Angular frequency () and time-period (T) for a pyramidal shape building 

With damping Without damping 

Seven Floors Four Floors Seven Floors Four Floors 

 T  T  T  T 

5.41 1.16 5.40 1.16 0.49 12.96 0.92 6.85 

4.64 1.35 4.30 1.46 1.56 4.02 2.82 2.23 

4.07 1.54 2.81 2.24 2.55 2.47 4.33 1.45 

3.39 1.85 0.92 6.85 3.40 1.85 5.45 1.15 

2.54 2.47 - - 4.09 1.54 - - 

1.56 4.02 - - 4.67 1.35 - - 

0.48 12.96 - - 5.46 1.15 - - 

 
Table-III Angular frequency () and time-period (T) for an inverted pyramidal shape building. 

With damping Without damping 

Seven Floors Four Floors Seven Floors Four Floors 

 T  T  T  T 

5.20 1.21 5.19 1.21 0.57 11.07 1.01 6.20 

4.49 1.40 4.16 1.51 1.56 4.04 2.75 2.28 

3.95 1.59 2.75 2.29 2.49 2.52 4.18 1.50 

3.30 1.91 1.01 6.20 3.31 1.90 5.23 1.20 

2.48 2.53 - - 3.97 1.58 - - 

1.55 4.04 - - 4.52 1.39 - - 

0.57 11.07 - - 5.25 1.20 - - 

 
       Table-IV Angular frequency () and time-period (T) for a cross shape building. 

With damping Without damping 

Seven Floors Four Floors Seven Floors Four Floors 

 T  T  T  T 

5.69 1.10 5.77 1.09 0.57 11.00 1.05 5.99 

4.93 1.27 4.56 1.38 1.67 3.77 2.97 2.12 

4.37 1.44 2.96 2.12 2.72 2.31 4.59 1.37 

3.59 1.75 1.05 5.99 3.61 1.74 5.84 1.08 

2.72 2.31 - - 4.40 1.43 - - 

1.67 3.77 - - 4.97 1.26 - - 

0.57 11.00 - - 5.75 1.09 - - 

 
      Table-V Angular frequency () and time-period (T) for a hexagonal shape building. 

With damping Without damping 
Seven Floors Four Floors Seven Floors Four Floors 

 T  T  T  T 
5.42 1.16 5.51 1.14 0.59 10.69 1.05 6.01 
5.19 1.21 4.65 1.35 1.78 3.54 3.06 2.05 
4.53 1.39 3.05 2.06 2.85 2.20 4.68 1.34 
3.81 1.65 1.04 6.01 3.83 1.64 5.57 1.13 
2.84 2.21 - - 4.56 1.38 - - 
1.77 3.54 - - 5.23 1.20 - - 
0.59 10.69 - - 5.47 1.15 - - 

 

From Table I one concludes that though an earthquake of time-period approximately 2 sec will 

be resonant with both seven storeyed and four storeyed building. But an earthquake with time-
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period approximately 5.7 sec will resonate with a four storeyed building (with damping case). 

This phenomenon for the case of without damping is also observed in the maximal amplitude 

versus time-period of oscillation of the earthquake that is plotted in Figure II – Figure VI (using 

equation 7 with P = 0). Also an earthquake with time-period approximately 5.7 sec will be 

more destructive for a four storeyed building as compared to an earthquake of time-period 3.54 

sec that resonates with a seven storeyed building. 

 

 
  (a)       (b) 
Figure-II: Maximal amplitude versus time-period of oscillation for a rectangular building (a) Seven Storeyed

  (b) Four Storeyed 

 

 
  (a)       (b) 
Figure-III: Maximal amplitude versus time-period of oscillation for a pyramidal shape building (a) Seven Storeyed

  (b) Four Storeyed 

 

 

 
(a)     (b) 

Figure-IV: Maximal amplitude versus time-period of oscillation for aninverse pyramidal shape building (a) 

Seven Storeyed  (b) Four Storeyed 
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(a)         (b) 

Figure-V: Maximal amplitude versus time-period of oscillation for a cross shape building (a) Seven Storeyed

  (b) Four Storeyed 

 
(a)         (b) 

Figure-VI: Maximal amplitude versus time-period of oscillation for a hexagonal shape building (a) Seven 

Storeyed  (b) Four Storeyed 

 

CONCLUSION 

 

A mathematical model based on forced spring oscillation is extended to study the effect of 

earthquake on high-rise buildings of different shapes. In order to get a qualitative understanding 

of the problem the mass of each floor is assumed to be located at the mass centre of each floor. 

Further we assume that the stiffness and damping parameters for each floor are constants. The 

model gives a clear insight as to why an earthquake of certain frequency effect adversely on a 

building even though it may have a lesser number of floors.  
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